Modeling the Effect of Changes in Solar Radiation Rays on Solar Cell Output Using MATLAB/Simulink
Abstract
The intensity of solar radiation is the main factor that affects the performance of solar cells in generating electrical power. This study modeled the effect of solar radiation changes on the power output of solar panels using Matlab/Simulink, with solar radiation data from Nasa Power for the Tanjung Anom location. The simulation was carried out to measure the output power based on variations in solar radiation intensity and ambient temperature in the effective time range, namely 09.00 to 16.00. The results show that the intensity of solar radiation is directly proportional to the output power of solar panels. At the highest radiation intensity of 620.35 W/m², the maximum power produced reaches 107.6 W, with a voltage of 20.35 V and a current of 5.286 A. On the other hand, at the lowest radiation of 205.61 W/m², the power decreases to 11.94 W. The model successfully illustrates the linear relationship between solar radiation, voltage, current, and output power, and shows the sensitivity of solar panels to changes in environmental parameters. Using MATLAB/Simulink, this model can be used to design and optimize photovoltaic systems according to local conditions. This research makes an important contribution to a deep understanding of the characteristics of solar cells, as well as a reference in the development of more efficient and environmentally friendly solar energy systems.
Downloads
References
Al-Ezzi, A., & Ansari, M. N. M. (2022). Photovoltaic Solar Cells: A Review. Applied System Innovation. https://doi.org/10.3390/asi5040067
Alsayid, B., Alsadi, S., Jallad, J., & Dradi, M. H. (2013). Partial Shading of PV System Simulation With Experimental Results. Smart Grid and Renewable Energy. https://doi.org/10.4236/sgre.2012.46049
Aryza, S., Hermansyah, H., Utama Siahaan, A. P., Suherman, S., & Lubis, Z. (2017). Implementasi Energi Surya Sebagai Sumber Suplai Alat Pengering Pupuk Petani Portabel. It Journal Research and Development. https://doi.org/10.25299/itjrd.2017.vol2(1).642
Aryza. S et al (2023). Enhanced of Electric Power Consumption Monitoring System in Household Based on Sensorless. Jurnal Scientia, 12(04), 2107-2113.
Dani, A., & Erivianto, D. (2024). Potential of rooftop solar electric energy on campus buildings high school of technology Sinar Husni using helioscope software. Informatika Dan Sains, 14(01), 2024. https://doi.org/10.54209/infosains.v14i01
Dani, A. H., & Erivianto, D. (2022). Studi Sistem Pembangkit Listrik Tenaga Surya Off Grid Skala Rumah Tangga Pada Daerah Bagan Deli Menggunakan Pvsyst. Jurnal Indonesia Sosial Teknologi. https://doi.org/10.36418/jist.v3i9.496
Das, N., Wongsodihardjo, H., & Islam, S. (2015). Modeling of Multi-Junction Photovoltaic Cell Using MATLAB/Simulink to Improve the Conversion Efficiency. Renewable Energy. https://doi.org/10.1016/j.renene.2014.09.017
Ergashev, S. H., Fayziev, T. A., Tilavov, Yu. S., Sattorov, B. N., Khidirov, M. M., & Mirzayorova, S. U. (2022). Mathematical Modeling of Greenhouse-Livestock Complex Heated by Solar and Bioenergy Sources. Iop Conference Series Earth and Environmental Science. https://doi.org/10.1088/1755-1315/1070/1/012031
Hui, S., Xing, Y., & Wang, X. (2017). Dynamic Simulation of Solar Heating System in Summer and Winter. Destech Transactions on Engineering and Technology Research. https://doi.org/10.12783/dtetr/emme2016/9791
Jadallah, A. A., Mahmood, D. Y., & Abdulqader, Z. A. (2015). Modeling and Simulation of a Photovoltaic Module in Different Operating Regimes. Acta Physica Polonica A. https://doi.org/10.12693/aphyspola.128.b-461
Jumaat, S. A., Syazwan Majid, A. A., Abdullah, M. N., Radzi, N. H., Hamdan, R., & Salimin, S. (2018). Modeling of 120W Monocrystalline Photovoltaic Module Using MATLAB Simulink. Indonesian Journal of Electrical Engineering and Computer Science.
https://doi.org/10.11591/ijeecs.v11.i1.pp74-81
Khalf, D., Hassan, K. H., & Shary, D. K. (2022). A PV Generation System Based on P&O MPPT Algorithm and SVPWM Inverter for Standalone Applications.
https://doi.org/10.4108/eai.7-9-2021.2314775
Kıyan, M., Bingöl, E., Melikoğlu, M., & Albostan, A. (2013). Modelling and Simulation of a Hybrid Solar Heating System for Greenhouse Applications Using Matlab/Simulink. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2012.09.036
Li, C., & Zhou, S. (2014). The Modeling of Solar Cells. Applied Mechanics and Materials. https://doi.org/10.4028/www.scientific.net/amm.716-717.1438
NASA POWER | Docs | Methodology - NASA POWER | Docs. (n.d.). Retrieved December 22, 2024, from https://power.larc.nasa.gov/docs/methodology/
Nguyen, X. H. (2015). Matlab/Simulink Based Modeling to Study Effect of Partial Shadow on Solar Photovoltaic Array. Environmental Systems Research.
https://doi.org/10.1186/s40068-015-0042-1
Rahmaniar, R., Khairul, K., & Junaidi, A. (2023). Model and Analysis of Photovoltaic Modules With Irradiation and Temperature Variations Using Simulation Technology. Procedia of Engineering and Life Science. https://doi.org/10.21070/pels.v4i0.1386
Revankar, P. S., & Gandhare, W. Z. (2017). Comparison of Solar Maximum Power Tracking Methods for Stand Alone Solar Photo-Voltaic System. International Journal of Computer Applications. https://doi.org/10.5120/ijca2017914380
Sarniak, M. (2020). Modeling the Functioning of the Half-Cells Photovoltaic Module Under Partial Shading in the Matlab Package. Applied Sciences.
https://doi.org/10.3390/app10072575
Singh, A., Tyagi, P., Shankar, G., Deshmukh, A., & Vineeta. (2014). Simulation of Fuzzy Logic Control Based MPPT Technique for Photovoltaic System.
https://doi.org/10.15242/iie.e0914026
Sood, R., & Kalpesh, G. (2017). THD Reduction and Power Quality Improvement in Grid Connected PV System. International Journal of Trend in Scientific Research and Development. https://doi.org/10.31142/ijtsrd173
Thanh, N. N., & Quang, N. T. (2018). Simulation of Reconfiguration System Using Matlab-Simulink Environment. Journal of Computer Science and Cybernetics.
https://doi.org/10.15625/1813-9663/34/2/9194
Yau, J., WEI, J., Wang, H., Eniola, O., & Ibitoye, F. P. (2020). Modeling of the Internal Temperature for an Energy Saving Chinese Solar Greenhouse. Engineering Technology & Applied Science Research. https://doi.org/10.48084/etasr.3728