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 Leaf diseases are one of the primary factors contributing to reduced 
agricultural productivity, especially in tropical regions such as 
Indonesia. Early identification of infected areas is crucial to prevent 
further disease spread and minimize crop losses. This study proposes 
the application of YOLOv8 instance segmentation with an in-training 
augmentation strategy to precisely detect and segment leaf disease 
areas. The dataset consists of 3,528 diseased leaf images, with 588 
original images used for validation and 2,940 augmented images for 
training. The augmentation process includes mosaic, HSV adjustment, 
spatial transformations, RandAugment, and other techniques to 
enhance the model’s generalization capability. Model performance was 
evaluated using mAP, precision, recall, and Intersection over Union 
(IoU) metrics. Experimental results demonstrate that the model 
achieved stable performance with high mAP@50, precision and recall 
approaching optimal values, and an average IoU above 0.5. This 
approach is effective and has strong potential for implementation in 
early plant disease detection systems, supporting farmers in making 
timely and accurate decisions. 
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INTRODUCTION 

Agriculture remains the backbone of the economy in North Sumatra. According to 2021 data, 
the agricultural sector contributed approximately 13.28% to the national GDP and supplied rice 
consumed by more than 90% of Indonesia’s population, with per capita consumption averaging 
160 kg per year [1]. Furthermore, about 32% of Indonesia’s population depends on agriculture 
as their primary source of livelihood [2]. At the commodity level, rice, chili, tomatoes, and other 
horticultural crops serve not only as staple food sources but also as the main source of rural 
household income [3]. Red chili consumption in 2021 was recorded at 0.15 kg per capita per 
month (≈40.9 thousand tons per month), with a total consumption of 490.83 thousand tons. 
Uneven supply distribution has led to price fluctuations, contributing to inflation in the range of 
0.01– 0.07% [4]. 

The greatest threat to crop production is pests and diseases. Globally, plant diseases 
cause yield losses of up to 30% in staple crops, resulting in economic damage worth hundreds 
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of billions of dollars [5]. In rice cultivation, disease infections can reduce yields by 20–40% [6]. 
Such production losses not only undermine food security, but also disrupt farmers’ income and 
the price stability of commodities such as chili and tomatoes [7]. 

In practice, most farmers and extension workers still rely on visual observation of leaves, 
stems, or fruits to identify diseases [8]. This manual method requires substantial experience and 
skill, is time-consuming, inefficient, and highly prone to misdiagnosis. Even at the research level, 
classical image processing methods still depend on manual feature engineering and struggle to 
address the variability of natural environments [9]. Laboratory-based observations and visual 
inspections are also impractical for large- scale agricultural settings [10]. 

Advancements in artificial intelligence (AI) have created new opportunities. Deep learning 
models, particularly Convolutional Neural Networks (CNNs), have proven to be far more 
accurate compared to conventional methods [11] [12] [13]. Numerous studies have employed 
CNNs, EfficientNet, and Squeeze-and-Excitation (SE) modules for disease classification in rice, 
maize, and tomato, achieving high levels of accuracy. For example, a modified CNN model 
achieved an accuracy of 96.08% in rice disease detection [14], while EfficientNet Lite combined 
with KE-SVM improved potato disease detection accuracy from 79.38% to 87.82% in 
uncontrolled data and reached 99.54% in controlled data [15]. InsightNet, a MobileNet-based 
model, successfully classified tomato, bean, and chili leaf diseases with accuracy rates 
exceeding 97%. 

For tomato crops, the TomatoDet method, which integrates Swin DDETR, Meta- ACON, 
and IBiFPN modules, achieved a mean average precision (mAP) of 92.3%, while also 
accelerating detection speed. Other researchers developed E-TomatoDet, which combines 
transformer architectures and multi-kernel modules for tomato leaf disease classification, 
reaching mAP50 of 97.2%. 

 
METHOD 

This research is quantitative with an experimental and descriptive approach. The primary focus 
is the development and evaluation of a YOLOv8-based deep learning model for segmenting 
diseased areas of plant leaves in digital images. Analysis was conducted using a leaf image 
dataset that had been masked with diseased areas and haze using data augmentation 
techniques to test model performance improvements. 

The population in this study consists of all horticultural plant leaf images that are 
vulnerable to disease attacks in the region of North Sumatra and Indonesia. The research 
sample comprises a collection of diseased leaf images along with infection area masks (labels) 
obtained from open-source datasets (Kaggle) as well as digitally augmented data (rotation, 
flipping, zooming, and others) to increase the variety of training and validation data. 

In addition to classification methods, object detection algorithms such as YOLO and SSD 
have been widely employed for plant disease identification. For instance, YOLOv7 applied to tea 
leaf diseases achieved an accuracy of 97.3%, with a precision of 96.7% and a recall of 96.4%. 
Meanwhile, YOLOv4 combined with data augmentation reported an accuracy of 99.99%. An 
enhanced variant, SerpensGate YOLOv8, integrates Dynamic Snake Convolution and Super 
Token Attention modules, resulting in a 3.3% improvement in mAP compared to the standard 
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YOLOv8. For segmentation tasks, a modified YOLOv8-Seg that incorporates Ghost and BiFPN 
modules, along with the strategy of disabling mosaic augmentation during the final 10 epochs, 
demonstrated improved leaf segmentation accuracy. In other domains, YOLO LeafNet, a 
customized model derived from YOLOv5/v8, achieved a precision of 0.985, recall of 0.980, and 
mAP50 of 0.990. A comparative study between YOLOv4 and YOLOv3 revealed that YOLOv4 
attained higher accuracy and mAP (98%) while reducing computation time (29 s vs. 105 s). 
Furthermore, lightweight models such as SNMPF (based on ShuffleNetV2 and SimAM) 
successfully detected maize leaf diseases with 98.40% accuracy, while maintaining a compact 
model size of only 1.56 MB. 

Nevertheless, most studies have primarily focused on image-level classification or 
bounding box detection rather than detailed segmentation of infection areas. This research gap 
is particularly evident in tropical crops specific to Indonesia. Recent studies have indicated that 
data augmentation and YOLOv8-based instance segmentation can enhance the identification of 
diseased regions. However, farmers in practice still rely heavily on personal experience, which 
often leads to misdiagnosis and improper treatment. 

In response to these conditions, this study proposes the application of a YOLOv8 instance 
segmentation model with data augmentation strategies to detect and segment disease areas 
on rice, chili, and tomato leaves. This approach is expected to achieve precise spatial detection, 
provide clear visualizations of infection areas for farmers and extension workers, and accelerate 
field diagnosis. Consequently, disease management can be carried out earlier and more 
effectively, thereby supporting crop productivity and strengthening local food security. 

1. Research Instrument  
Dataset: Plant leaf images (JPG/PNG format) along with binary masks of disease areas 
(PNG). Software: 

a. Python (Jupyter/Kaggle Notebook) 
b. Main libraries: Ultralytics YOLOv8, OpenCV, Albumentations, NumPy, Matplotlib, 

scikit-learn. 
c. Hardware: GPU (NVIDIA Tesla P100 / NVIDIA Tesla T4) through cloud 

colaboratory services. 
d. Evaluation Metrics: Intersection over Union (IoU), Dice coefficient, and mean Average 

Precision (mAP). 
2. Research Procedure 

Dataset Preparation: 
a. Collecting diseased leaf image datasets and masks from open sources (Kaggle, 

GitHub, etc.). 
b. Performing augmentation on images and masks to expand the diversity of 

training data. 
Data Preprocessing: 

a. Converting masks to YOLOv8 segmentation polygon format. 
b. Structuring folders according to YOLOv8 standards (images/train, images/val, 

labels/train, labels/val). 
c. Normalizing image and mask sizes to a resolution of 640x640 pixels. 
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Model Training: 
a. Initializing the YOLOv8 instance segmentation model with pretrained weights. 
b. Training the model on augmented training data and validating on original data. 
c. Using predetermined epochs, batch size, and training parameters.  

Model Evaluation: 
a. Evaluating performance using IoU, Dice, and mAP metrics on validation data. 
b. Saving prediction results, prediction visualizations, and per-image scores into a CSV 

file. 
c. Comparing model performance with and without data augmentation. 

Analysis and Interpretation 
Interpreting the evaluation results, including IoU heatmap visualization per image and 

the distribution of Dice/IoU values. 
 

RESULTS AND DISCUSSION 

 
Figure 1. Research Stages 

Dataset Description and Initial Analysis 
The dataset used in this study is the Leaf Disease Segmentation Dataset (Kaggle, 

fakhrealam9537/leaf-disease-segmentation-dataset), consisting of a total of 3,528 diseased 
plant leaf images. The dataset is divided into two main groups: original data (588 images, used 
as validation data) and augmented data (2,940 images, used as training data). Each image 
is paired with a digitally annotated disease mask, providing the exact location and shape of the 
infected areas on the leaves. To ensure consistency, all data were normalized to a resolution of 
640×640 pixels using bilinear interpolation. The dataset preparation process also adhered 
to the standard YOLOv8 segmentation folder format, where images and masks were 
systematically organized into separate imxgcs and mxsks folders for each subset of "rxin and vxl. 
In addition, data augmentation was systematically applied using strategies such as rotation, 
flipping, zooming, and color transformations to enable the model to learn from diverse visual 

https://infor.seaninstitute.org/index.php/infokum


 

INFOKUM 
Volume 13, Number 06, 2025,  DOI 10.58471/infokum.v13i06 
ESSN  2722-4635 (Online) 
https://infor.seaninstitute.org/index.php/infokum  

 

 
Implementation of Yolov8 Instance Segmentation for Detection and Segmentation of Leaf 

Diseases in Horticultural Plants–Da’i Gilang Ramadhan et.al 
1987 | P a g e  

variations that may occur in real-world conditions. Through this procedure, the resulting 
dataset became highly representative and robust for training deep learning- based 
segmentation models. 
Implementasi Model YOLOv8 Instance Segmentation 

Figure 2. Mask and Segmentation of Plant Disease Areas 
In this study, the YOLOv8n-seg model was employed as the primary backbone due to its 

efficient architecture, consisting of 151 layers and more than 3 million parameters, making it 
well-suited for experiments under limited computational resources (e.g., GPU Tesla P100). 
YOLOv8n-seg is a variant of YOLOv8 specifically designed for instance segmentation, 
combining fast object detection with the ability to distinguish and separate each object instance 
within an image. 

Its architecture is divided into three main components: the backbone, responsible for 
extracting visual features from images; the neck, which fuses information across multiple 
resolution levels using FPN/PAN mechanisms; and the segmentation head, which predicts 
bounding boxes, classes, and mask coefficients for each instance. This model was selected not 
only for its efficiency but also for its flexibility in handling various complexities and variations in 
diseased leaf images, including differences in size, color, and distribution of infection areas 
within the dataset. Furthermore, YOLOv8n-seg leverages a prototypical mask (ProtoNet) 
approach, enabling the spatial prediction of disease area masks with high accuracy. Unlike mere 
image classification, this approach provides richer information for analysis and decision-making 
in plant disease management. 

Figure 3. YOLOv8-seg Architecture 
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Training Configuration and Performance 
In‑training augmentation 

Based on the sequence of processes in the notebook, the initial stage of training 
configuration begins with the application of a series of augmentation transformations designed 
to enhance the generalization capability of the YOLOv8n-seg model across various conditions 
and image characteristics. These augmentation techniques not only expand the diversity of the 
training data but also assist the model in addressing challenges such as variations in lighting, 
differences in scale, and the spatial distribution of diseases on the leaves. 

a. Mosaic augmentation combines four images into one composite frame, then is disabled 
during the last 10 epochs to maintain training stability before convergence. 

b. HSV adjustment modifies hue, saturation, and value to make the model more robust 
against variations in lighting and color. 

c. Spatial transformations include translation, scaling, rotation, and zoom to simulate field 
image capture from different angles and distances. 

d. RandAugment adds visual diversity through controlled random transformations, 
preventing the model from overfitting to fixed augmentation patterns. 

e. Erasing augmentation randomly removes parts of the image, forcing the model to focus 
on remaining contextual information. 

f. Light augmentations such as Blur, MedianBlur, ToGray, and CLAHE enhance local details 
or contrast, making diseased areas more distinguishable. 

g. Disabled techniques (MixUp, CutMix, Copy-Paste) are excluded as they may alter object 
shapes and mask boundaries, potentially reducing segmentation accuracy. 

Model Training 
The YOLOv8n-seg model was trained using a Tesla P100 GPU with batch size, number 

of epochs, and learning rate configurations that were carefully adjusted to maximize the 
utilization of limited resources while maintaining training stability. This process considered 
computational efficiency while ensuring the consistency of learning. 

The dataset used was neatly separated into train and validation subsets according to the 
standard YOLOv8 format, complete with folder structure and metadata arrangements, and 
employed an image resolution of 640×640 pixels to guarantee consistent input. During the 
training process, the model’s performance was continuously evaluated using a series of metrics 
that describe its object detection and segmentation capabilities. The main monitored metrics 
include box loss, class loss, and mask loss. 

a. Box loss represents the prediction error of object locations compared to their actual 
positions in the image. The smaller the box loss value, the more precise the model is 
in determining the bounding box coordinates. 

b. Class loss measures the degree of error in classifying objects into the correct class. 
This value is closely related to the model’s ability to distinguish between object 
categories. 

c. Mask loss is used in segmentation tasks to assess the accuracy of predicted masks, so 
that the model not only identifies the location of objects but also accurately 
differentiates the boundaries of the object area from the background. 
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b. In addition to loss, the model’s performance was also evaluated using the mAP 
(mean Average Precision) metric, which represents the average precision across all 
classes at different recall values. For the case of mAP@50, the calculation follows 
the equation: 

 
where 𝑝𝑖 (𝑟) is the precision function with respect to recall for 𝑖-th class, and NNN is the 

total number of classes. The value of 𝐴𝑃𝑖 is obtained from the area under the precision– recall 
curve (AUC-PR) for each class. For mAP50–95, the calculation is performed by averaging the 
mAP values at Intersection over Union (IoU) thresholds ranging from 0.50 to 0.95, with an 
increment of 0.05. This metric provides a stricter evaluation since it accounts for varying levels 
of difficulty in detecting and localizing objects. 

The training results are visualized in the form of loss curves and mAP curves, which 
facilitate real-time monitoring of the learning trends. The decreasing loss and increasing mAP 
trends indicate an improvement in model performance. As a preventive measure against 
overfitting, an early stopping strategy was applied by halting the training process when 
performance on the validation data showed a decline or stagnation. This approach not only 
saves computational time but also preserves the model’s generalization quality on unseen data. 
Results and Evaluation 

 
Figure 4. Segmentation Loss Curve, mAP Segmentation, and Precision & Recall Mask  
The following figure presents the training curves of the model comprehensively, providing 

deep visual insights into the development of the model’s performance over time, ranging from 
the efficiency of the learning process to the achievement of optimal evaluation metrics. 

a. Left Graph (Segmentation Loss): Shows a significant decrease in train loss and val loss, 
with an intensive learning phase at the beginning that gradually converges. The small 
gap between the two indicates minimal overfitting and stable learning. 

b. Middle Graph (mAP Segmentation): Both mAP@50 and mAP@50–95 consistently 
increase with each epoch. mAP@50 reflects detection accuracy with looser tolerance, 
while mAP@50–95 demonstrates robustness under stricter precision criteria. Their 
steady rise indicates overall improvement in segmentation performance. 
c. Right Graph (Precision & Recall Mask): Precision and recall steadily approach 
optimal values with parallel trends, showing a balance between minimizing false 
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positives and capturing relevant objects. This pattern reflects reliable segmentation 
performance even under diverse data conditions. 

 
Figure 5. Example of Model Segmentation Prediction Results 

a. Prediction 1: The model successfully identified the diseased area with very high 
confidence (0.98) and produced precise segmentation, covering the entire infected 
region even though the background had a color similar to the target object. This 
highlights the model’s ability to distinguish fine textures and subtle color patterns that 
separate healthy leaves from infected ones. 

b. Prediction 2: The model detected multiple disease instances with varying confidence 
levels, ranging from 0.25 to above 0.90. Several overlapping bounding boxes indicate 
potential duplicate predictions within the same area, possibly caused by irregular 
disease patterns or visually similar features in neighboring regions. This case 
emphasizes the challenge of handling duplicate predictions in instance detection models. 

c. Prediction 3: Displays segmentation of a large diseased region with confidence of 0.88, 
reflecting the model’s capability to recognize disease patterns spread evenly across the 
leaf surface. This result also demonstrates the model’s robustness to variations in leaf 
shape and size, as well as its consistency in segmenting larger infected areas. 

d. Prediction 4: Shows multiple detections in a single image across different disease region 
sizes, ranging from small spots to larger infected areas. Confidence values span from 
0.34 to 0.85, indicating the model’s sensitivity to varying levels of infection severity. This 
distribution suggests that the model can capture fine details while still detecting more 
significant regions, although further optimization is 
needed to improve confidence score consistency in small-scale areas. 
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Figure 6.  IoU Heatmap per Image 

The IoU heatmap visualization shows the distribution of Intersection over Union scores 
across the test dataset. Each column represents an image, where darker red indicates higher 
IoU (strong mask–ground truth alignment), and lighter shades mark lower scores, often in cases 
with complex backgrounds or subtle disease patterns. 

Most images achieve IoU above 0.5, confirming reliable segmentation, though variations 
reveal differing difficulty levels—such as small lesions, diverse patterns, or visual disturbances 
(e.g., shadows and reflections). This analysis highlights challenging cases and provides 
direction for model refinement, where low-scoring data can benefit from additional 
augmentation or retraining. The efficient YOLOv8n-seg architecture, enhanced with ProtoNet, 
ensures accurate spatial segmentation, robustness, and readiness for real-world 
implementation. 
 

CONCLUSION 
The implementation of the YOLOv8n-seg model with appropriate augmentation configurations 
and an efficient architecture has been proven capable of performing leaf disease segmentation 
with high and consistent accuracy, even on complex datasets. Evaluation using mAP, precision, 
recall, and IoU heatmap demonstrates stable performance under various lighting conditions and 
background complexities. The integration of ProtoNet enhances the precision of disease 
boundary delineation, while the application of in-training augmentation improves model 
adaptability and reduces overfitting. These findings indicate that the proposed approach holds 
strong potential for implementation in early plant disease detection systems, providing valuable 
support for decision-making processes in the agricultural domain. 
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